Math 522 Exam 9 Solutions

Theorem 1. Let $m, n \in \mathbb{N}$. If $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$.
Theorem 2. Let $p, k \in \mathbb{N}$. If p is prime, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.

1. Use the two theorems above to prove the following:

Claim. For all $n \in \mathbb{N}, \phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.
Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, the unique factorization into prime powers guaranteed by the Fundamental Theorem of Arithmetic. Proof proceeds by induction on r.
$r=0$: Then $n=\phi(n)=1$, and the product is empty (hence equal to 1), so the RHS is 1 . Maybe you don't like this, so let's do one more base case.
$r=1$: Then $n=p_{1}^{k_{1}}$. By Theorem 2, $\phi(n)=p_{1}^{k_{1}}-p_{1}^{k_{1}-1}=$ $p_{1}^{k_{1}}\left(1-\frac{1}{p_{1}}\right)=n\left(1-\frac{1}{p_{1}}\right)$, as desired.
$r>1$: Write $n=\left(p_{1}^{k_{1}}\right) m$, where $m=p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$. Applying both theorems, we get $\phi(n)=\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right) \phi(m)$. Applying the inductive hypothesis, we get $\phi(n)=p_{1}^{k_{1}}(1-$ $\left.\frac{1}{p_{1}}\right) m \prod_{p \mid m}\left(1-\frac{1}{p}\right)=n\left(1-\frac{1}{p_{1}}\right) \prod_{p \mid m}\left(1-\frac{1}{p}\right)=$ RHS, as desired.
2. Compute $\phi(150), d(150)$, and $\sigma(150)$.

We begin by factoring $150=2 \cdot 3 \cdot 5^{2}$.

$$
\begin{aligned}
& \phi(150)=150 \prod_{p \mid 150}\left(1-\frac{1}{p}\right)=150\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=40 . \\
& d(150)=(1+1)(1+1)(1+1+1)=2 \cdot 2 \cdot 3=12 . \\
& \sigma(150)=(1+2)(1+3)(1+5+25)=3 \cdot 4 \cdot 31=372 .
\end{aligned}
$$

